Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Front Vet Sci ; 11: 1301667, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379925

RESUMO

Mycobacterium avium subsp. paratuberculosis (MAP) is the aetiological agent of paratuberculosis (Johne's disease) in both domestic and wild ruminants. In the present study, using a whole-genome sequence (WGS) approach, we investigated the genetic diversity of 15 Mycobacterium avium field strains isolated in the last 10 years from red deer inhabiting the Stelvio National Park and affected by paratuberculosis. Combining de novo assembly and a reference-based method, followed by a pangenome analysis, we highlight a very close relationship among 13 MAP field isolates, suggesting that a single infecting event occurred in this population. Moreover, two isolates have been classified as Mycobacterium avium subsp. hominissuis, distinct from the other MAPs under comparison but close to each other. This is the first time that this subspecies has been found in Italy in samples without evident epidemiological correlations, having been isolated in two different locations of the Stelvio National Park and in different years. Our study highlights the importance of a multidisciplinary approach incorporating molecular epidemiology and ecology into traditional infectious disease knowledge in order to investigate the nature of infectious disease in wildlife populations.

2.
Anim Genet ; 54(4): 544-548, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37313778

RESUMO

A structural variant (SV) in the agouti signaling protein gene (ASIP), namely ASIP-SV1, has been found to strongly correlate with the darkness of hair coat in specific regions of the body of bulls from the zebu (Bos indicus) Nellore breed. Here we visually analyzed the whole-genome sequence of zebu and taurine (Bos taurus) cattle to elucidate the extent of spread of ASIP-SV1 in different cattle populations. Of 216 sequences analyzed, 63 zebu (45.9%) and five taurine (6.3%) animals had at least one copy of ASIP-SV1. Four of the taurine animals presenting the SV were Romagnola cattle, a breed with history of zebu introgression. The remaining taurine animal was a Simmental, a breed frequently used in crossbreeding. These data provide evidence that ASIP-SV1 is commonly found in zebu populations, in addition to taurine animals with zebu admixture.


Assuntos
Cabelo , Hibridização Genética , Bovinos/genética , Masculino , Animais , Escuridão , Alelos
3.
Biomedicines ; 10(8)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36009575

RESUMO

In recent years, the involvement of the gut microbiota in disease and health has been investigated by sequencing the 16S gene from fecal samples. Dysbiotic gut microbiota was also observed in Autism Spectrum Disorder (ASD), a neurodevelopmental disorder characterized by gastrointestinal symptoms. However, despite the relevant number of studies, it is still difficult to identify a typical dysbiotic profile in ASD patients. The discrepancies among these studies are due to technical factors (i.e., experimental procedures) and external parameters (i.e., dietary habits). In this paper, we collected 959 samples from eight available projects (540 ASD and 419 Healthy Controls, HC) and reduced the observed bias among studies. Then, we applied a Machine Learning (ML) approach to create a predictor able to discriminate between ASD and HC. We tested and optimized three algorithms: Random Forest, Support Vector Machine and Gradient Boosting Machine. All three algorithms confirmed the importance of five different genera, including Parasutterella and Alloprevotella. Furthermore, our results show that ML algorithms could identify common taxonomic features by comparing datasets obtained from countries characterized by latent confounding variables.

4.
Mol Ecol ; 31(16): 4364-4380, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35751552

RESUMO

By their paternal transmission, Y-chromosomal haplotypes are sensitive markers of population history and male-mediated introgression. Previous studies identified biallelic single-nucleotide variants in the SRY, ZFY and DDX3Y genes, which in domestic goats identified four major Y-chromosomal haplotypes, Y1A, Y1B, Y2A and Y2B, with a marked geographical partitioning. Here, we extracted goat Y-chromosomal variants from whole-genome sequences of 386 domestic goats (75 breeds) and seven wild goat species, which were generated by the VarGoats goat genome project. Phylogenetic analyses indicated domestic haplogroups corresponding to Y1B, Y2A and Y2B, respectively, whereas Y1A is split into Y1AA and Y1AB. All five haplogroups were detected in 26 ancient DNA samples from southeast Europe or Asia. Haplotypes from present-day bezoars are not shared with domestic goats and are attached to deep nodes of the trees and networks. Haplogroup distributions for 186 domestic breeds indicate ancient paternal population bottlenecks and expansions during migrations into northern Europe, eastern and southern Asia, and Africa south of the Sahara. In addition, sharing of haplogroups indicates male-mediated introgressions, most notably an early gene flow from Asian goats into Madagascar and the crossbreeding that in the 19th century resulted in the popular Boer and Anglo-Nubian breeds. More recent introgressions are those from European goats into the native Korean goat population and from Boer goat into Uganda, Kenya, Tanzania, Malawi and Zimbabwe. This study illustrates the power of the Y-chromosomal variants for reconstructing the history of domestic species with a wide geographical range.


Assuntos
DNA Mitocondrial , Variação Genética , Animais , DNA Mitocondrial/genética , Cabras/genética , Haplótipos/genética , Filogenia , Cromossomo Y/genética
5.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34884564

RESUMO

Milk extracellular vesicles (mEVs) seem to be one of the main maternal messages delivery systems. Extracellular vesicles (EVs) are micro/nano-sized membrane-bound structures enclosing signaling molecules and thus acting as signal mediators between distant cells and/or tissues, exerting biological effects such as immune modulation and pro-regenerative activity. Milk is also a unique, scalable, and reliable source of EVs. Our aim was to characterize the RNA content of cow, donkey, and goat mEVs through transcriptomic analysis of mRNA and small RNA libraries. Over 10,000 transcripts and 2000 small RNAs were expressed in mEVs of each species. Among the most represented transcripts, 110 mRNAs were common between the species with cow acting as the most divergent. The most represented small RNA class was miRNA in all the species, with 10 shared miRNAs having high impact on the immune regulatory function. Functional analysis for the most abundant mRNAs shows epigenetic functions such as histone modification, telomere maintenance, and chromatin remodeling for cow; lipid catabolism, oxidative stress, and vitamin metabolism for donkey; and terms related to chemokine receptor interaction, leukocytes migration, and transcriptional regulation in response to stress for goat. For miRNA targets, shared terms emerged as the main functions for all the species: immunity modulation, protein synthesis, cellular cycle regulation, transmembrane exchanges, and ion channels. Moreover, donkey and goat showed additional terms related to epigenetic modification and DNA maintenance. Our results showed a potential mEVs immune regulatory purpose through their RNA cargo, although in vivo validation studies are necessary.


Assuntos
Anti-Inflamatórios/metabolismo , Vesículas Extracelulares/imunologia , Regulação da Expressão Gênica , Imunomodulação , Leite/imunologia , Transcriptoma , Animais , Bovinos , Equidae , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Feminino , Cabras , MicroRNAs/genética , Leite/química , Leite/metabolismo
6.
Animals (Basel) ; 11(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34679854

RESUMO

Livestock radiated out from domestication centres to most regions of the world, gradually adapting to diverse environments, from very hot to sub-zero temperatures and from wet and humid conditions to deserts. The climate is changing; generally global temperature is increasing, although there are also more extreme cold periods, storms, and higher solar radiation. These changes impact livestock welfare and productivity. This review describes advances in the methodology for studying livestock genomes and the impact of the environment on animal production, giving examples of discoveries made. Sequencing livestock genomes has facilitated genome-wide association studies to localize genes controlling many traits, and population genetics has identified genomic regions under selection or introgressed from one breed into another to improve production or facilitate adaptation. Landscape genomics, which combines global positioning and genomics, has identified genomic features that enable animals to adapt to local environments. Combining the advances in genomics and methods for predicting changes in climate is generating an explosion of data which calls for innovations in the way big data sets are treated. Artificial intelligence and machine learning are now being used to study the interactions between the genome and the environment to identify historic effects on the genome and to model future scenarios.

7.
Front Genet ; 12: 633132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122501

RESUMO

Heat stress has a detrimental impact on cattle health, welfare and productivity by affecting gene expression, metabolism and immune response, but little is known on the epigenetic mechanisms mediating the effect of temperature at the cellular and organism level. In this study, we investigated genome-wide DNA methylation in blood samples collected from 5 bulls of the heat stress resilient Nellore breed and 5 bulls of the Angus that are more heat stress susceptible, exposed to the sun and high temperature-high humidity during the summer season of the Brazilian South-East region. The methylomes were analyzed during and after the exposure by Reduced Representation Bisulfite Sequencing, which provided genome-wide single-base resolution methylation profiles. Significant methylation changes between stressful and recovery periods were observed in 819 genes. Among these, 351 were only seen in Angus, 366 were specific to Nellore, and 102 showed significant changes in methylation patterns in both breeds. KEGG and Gene Ontology (GO) enrichment analyses showed that responses were breed-specific. Interestingly, in Nellore significant genes and pathways were mainly involved in stress responses and cellular defense and were under methylated during heat stress, whereas in Angus the response was less focused. These preliminary results suggest that heat challenge induces changes in methylation patterns in specific loci, which should be further scrutinized to assess their role in heat tolerance.

9.
Genet Sel Evol ; 53(1): 40, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33910501

RESUMO

BACKGROUND: Nellore cattle (Bos indicus) are well-known for their adaptation to warm and humid environments. Hair length and coat color may impact heat tolerance. The Nellore breed has been strongly selected for white coat, but bulls generally exhibit darker hair ranging from light grey to black on the head, neck, hump, and knees. Given the potential contribution of coat color variation to the adaptation of cattle populations to tropical and sub-tropical environments, our aim was to map positional and functional candidate genetic variants associated with darkness of hair coat (DHC) in Nellore bulls. RESULTS: We performed a genome-wide association study (GWAS) for DHC using data from 432 Nellore bulls that were genotyped for more than 777 k single nucleotide polymorphism (SNP) markers. A single major association signal was detected in the vicinity of the agouti signaling protein gene (ASIP). The analysis of whole-genome sequence (WGS) data from 21 bulls revealed functional variants that are associated with DHC, including a structural rearrangement involving ASIP (ASIP-SV1). We further characterized this structural variant using Oxford Nanopore sequencing data from 13 Australian Brahman heifers, which share ancestry with Nellore cattle; we found that this variant originates from a 1155-bp deletion followed by an insertion of a transposable element of more than 150 bp that may impact the recruitment of ASIP non-coding exons. CONCLUSIONS: Our results indicate that the variant ASIP sequence causes darker coat pigmentation on specific parts of the body, most likely through a decreased expression of ASIP and consequently an increased production of eumelanin.


Assuntos
Proteína Agouti Sinalizadora/genética , Bovinos/genética , Pigmentação/genética , Polimorfismo Genético , Pelo Animal/metabolismo , Animais , Elementos de DNA Transponíveis , Mutação INDEL , Melaninas/genética , Melaninas/metabolismo
10.
Genes (Basel) ; 12(4)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917627

RESUMO

Stress in livestock reduces productivity and is a welfare concern. At a physiological level, stress is associated with the activation of inflammatory responses and increased levels of harmful reactive oxygen species. Biomarkers that are indicative of stress could facilitate the identification of more stress-resilient animals. We examined twenty-one metabolic, immune response, and liver function biomarkers that have been associated with stress in 416 Italian Simmental and 436 Italian Holstein cows which were genotyped for 150K SNPs. Single-SNP and haplotype-based genome-wide association studies were carried out to assess whether the variation in the levels in these biomarkers is under genetic control and to identify the genomic loci involved. Significant associations were found for the plasma levels of ceruloplasmin (Bos taurus chromosome 1-BTA1), paraoxonase (BTA4) and γ-glutamyl transferase (BTA17) in the individual breed analysis that coincided with the position of the genes coding for these proteins, suggesting that their expression is under cis-regulation. A meta-analysis of both breeds identified additional significant associations with paraoxonase on BTA 16 and 26. Finding genetic associations with variations in the levels of these biomarkers suggests that the selection for high or low levels of expression could be achieved rapidly. Whether the level of expression of the biomarkers correlates with the response to stressful situations has yet to be determined.


Assuntos
Biomarcadores/sangue , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Estresse Fisiológico , Animais , Arildialquilfosfatase/sangue , Bovinos , Ceruloplasmina/análise , Genômica , gama-Glutamiltransferase/sangue
11.
Rev Bras Parasitol Vet ; 30(1): e022020, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33729316

RESUMO

Leishmaniasis is a zoonotic disease caused by over 20 species of protozoan parasites of the genus Leishmania. Infection is commonly spread by sandflies and produces a wide spectrum of clinical signs and symptoms. Therefore, from an epidemiological and therapeutic standpoint, it is important to detect and differentiate Leishmania spp. The objective of this study was to combinate in silico and in vitro strategies to evaluate the analytical specificity of primers previously described in the literature. According to electronic PCR (e-PCR) analysis, 23 out of 141 pairs of primers selected through literature search matched their previously reported analytical specificity. In vitro evaluation of nine of these primer pairs by quantitative PCR (qPCR) confirmed the analytical specificity of five of them at the level of Leishmania spp., L. mexicana complex or Leishmania and Viannia subgenera. Based on these findings, the combination of e-PCR and qPCR is suggested to be a valuable approach to maximize the specificity of new primer pairs for the laboratory diagnosis of infections with Leishmania spp.


Assuntos
Leishmania , Leishmaniose , Psychodidae , Animais , Simulação por Computador , DNA de Protozoário , Leishmania/genética , Leishmaniose/diagnóstico , Leishmaniose/veterinária , Reação em Cadeia da Polimerase em Tempo Real/veterinária
12.
Rev. bras. parasitol. vet ; 30(1): e022020, 2021. tab
Artigo em Inglês | LILACS | ID: biblio-1156230

RESUMO

Abstract Leishmaniasis is a zoonotic disease caused by over 20 species of protozoan parasites of the genus Leishmania. Infection is commonly spread by sandflies and produces a wide spectrum of clinical signs and symptoms. Therefore, from an epidemiological and therapeutic standpoint, it is important to detect and differentiate Leishmania spp. The objective of this study was to combinate in silico and in vitro strategies to evaluate the analytical specificity of primers previously described in the literature. According to electronic PCR (e-PCR) analysis, 23 out of 141 pairs of primers selected through literature search matched their previously reported analytical specificity. In vitro evaluation of nine of these primer pairs by quantitative PCR (qPCR) confirmed the analytical specificity of five of them at the level of Leishmania spp., L. mexicana complex or Leishmania and Viannia subgenera. Based on these findings, the combination of e-PCR and qPCR is suggested to be a valuable approach to maximize the specificity of new primer pairs for the laboratory diagnosis of infections with Leishmania spp.


Resumo As leishmanioses são zoonoses causadas por mais de 20 espécies de protozoários do gênero Leishmania. As infecções são comumente disseminadas por flebotomíneos e causam um amplo espectro de manifestações clínicas. Portanto, a detecção e diferenciação de espécies de Leishmania são importantes do ponto de vista epidemiológico e terapêutico. O objetivo deste estudo foi combinar estratégias in silico e in vitro para avaliar a especificidade analítica dos primers descritos anteriormente na literatura. De acordo com a PCR eletrônica (e-PCR), 23 dos 141 pares de primers selecionados por meio de pesquisa da literatura estavam de acordo com a especificidade analítica anteriormente relatada. A avaliação in vitro de nove desses pares de primers, por PCR quantitativa (qPCR), confirmou a especificidade analítica de cinco deles ao nível de espécie de Leishmania, do complexo L. mexicana ou dos subgêneros Leishmania e Viannia. Com base nos resultados, sugere-se que a combinação de e-PCR e qPCR é uma abordagem valiosa para a validação e maximização da especificidade de novos pares de primers para o diagnóstico laboratorial de infecções com Leishmania spp.


Assuntos
Animais , Psychodidae , Leishmaniose/veterinária , Leishmania/genética , Simulação por Computador , Leishmaniose/diagnóstico , DNA de Protozoário , Reação em Cadeia da Polimerase em Tempo Real/veterinária
13.
Front Med (Lausanne) ; 7: 247, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32574335

RESUMO

Background: Ending the COVID-19 pandemic is arguably one of the most prominent challenges in recent human history. Following closely the growth dynamics of the disease is one of the pillars toward achieving that goal. Objective: We aimed at developing a simple framework to facilitate the analysis of the growth rate (cases/day) and growth acceleration (cases/day2) of COVID-19 cases in real-time. Methods: The framework was built using the Moving Regression (MR) technique and a Hidden Markov Model (HMM). The dynamics of the pandemic was initially modeled via combinations of four different growth stages: lagging (beginning of the outbreak), exponential (rapid growth), deceleration (growth decay), and stationary (near zero growth). A fifth growth behavior, namely linear growth (constant growth above zero), was further introduced to add more flexibility to the framework. An R Shiny application was developed, which can be accessed at https://theguarani.com.br/ or downloaded from https://github.com/adamtaiti/SARS-CoV-2. The framework was applied to data from the European Center for Disease Prevention and Control (ECDC), which comprised 3,722,128 cases reported worldwide as of May 8th 2020. Results: We found that the impact of public health measures on the prevalence of COVID-19 could be perceived in seemingly real-time by monitoring growth acceleration curves. Restriction to human mobility produced detectable decline in growth acceleration within 1 week, deceleration within ~2 weeks and near-stationary growth within ~6 weeks. Countries exhibiting different permutations of the five growth stages indicated that the evolution of COVID-19 prevalence is more complex and dynamic than previously appreciated. Conclusions: These results corroborate that mass social isolation is a highly effective measure against the dissemination of SARS-CoV-2, as previously suggested. Apart from the analysis of prevalence partitioned by country, the proposed framework is easily applicable to city, state, region and arbitrary territory data, serving as an asset to monitor the local behavior of COVID-19 cases.

14.
BMC Bioinformatics ; 21(1): 46, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32028885

RESUMO

BACKGROUND: During the last decade, with the aim to solve the challenge of post-genomic and transcriptomic data mining, a plethora of tools have been developed to create, edit and analyze metabolic pathways. In particular, when a complex phenomenon is considered, the creation of a network of multiple interconnected pathways of interest could be useful to investigate the underlying biology and ultimately identify functional candidate genes affecting the trait under investigation. RESULTS: PANEV (PAthway NEtwork Visualizer) is an R package set for gene/pathway-based network visualization. Based on information available on KEGG, it visualizes genes within a network of multiple levels (from 1 to n) of interconnected upstream and downstream pathways. The network graph visualization helps to interpret functional profiles of a cluster of genes. CONCLUSIONS: The suite has no species constraints and it is ready to analyze genomic or transcriptomic outcomes. Users need to supply the list of candidate genes, specify the target pathway(s) and the number of interconnected downstream and upstream pathways (levels) required for the investigation. The package is available at https://github.com/vpalombo/PANEV.


Assuntos
Redes e Vias Metabólicas/genética , Software , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Genômica
16.
Front Genet ; 9: 627, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30581455

RESUMO

Navel injuries caused by friction against the pasture can promote infection, reproductive problems and costly treatments in beef cattle raised in extensive systems. A haplotype-based genome-wide association study (GWAS) was performed for visual scores of navel length at yearling in Nellore cattle (Bos indicus) using data from 2,016 animals and 503,088 single nucleotide polymorphism (SNP) markers. The strongest signal (p = 1.01 × 10-9) was found on chromosome 5 spanning positions 47.9-48.2 Mbp. This region contains introns 3 and 4 and exons 4 and 5 of the high mobility group AT-hook 2 gene (HMGA2). Further inspection of the region with whole genome sequence data of 21 Nellore bulls revealed correlations between counts of the significant haplotype and copy number gains of a ∼6.2 kbp segment of intron 3 of HMGA2. Analysis of genome sequences from five African B. indicus and four European Bos taurus breeds revealed that the copy number variant (CNV) is indicine-specific. This intronic CNV was then validated through quantitative polymerase chain reaction (qPCR) using Angus animals as copy neutral controls. Importantly, the CNV was not detectable by means of conventional SNP-based GWAS or SNP probe intensity analyses. Given that HMGA2 affects the expression of the insulin-like growth factor 2 gene (IGF2) together with the pleomorphic adenoma gene 1 (PLAG1), and that the latter has been repeatedly shown to be associated with quantitative traits of economic importance in cattle, these findings highlight the emerging role of variants impacting the insulin-like growth factor pathway to cattle breeding.

17.
Genet Sel Evol ; 50(1): 57, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30449276

RESUMO

BACKGROUND: Since goat was domesticated 10,000 years ago, many factors have contributed to the differentiation of goat breeds and these are classified mainly into two types: (i) adaptation to different breeding systems and/or purposes and (ii) adaptation to different environments. As a result, approximately 600 goat breeds have developed worldwide; they differ considerably from one another in terms of phenotypic characteristics and are adapted to a wide range of climatic conditions. In this work, we analyzed the AdaptMap goat dataset, which is composed of data from more than 3000 animals collected worldwide and genotyped with the CaprineSNP50 BeadChip. These animals were partitioned into groups based on geographical area, production uses, available records on solid coat color and environmental variables including the sampling geographical coordinates, to investigate the role of natural and/or artificial selection in shaping the genome of goat breeds. RESULTS: Several signatures of selection on different chromosomal regions were detected across the different breeds, sub-geographical clusters, phenotypic and climatic groups. These regions contain genes that are involved in important biological processes, such as milk-, meat- or fiber-related production, coat color, glucose pathway, oxidative stress response, size, and circadian clock differences. Our results confirm previous findings in other species on adaptation to extreme environments and human purposes and provide new genes that could explain some of the differences between goat breeds according to their geographical distribution and adaptation to different environments. CONCLUSIONS: These analyses of signatures of selection provide a comprehensive first picture of the global domestication process and adaptation of goat breeds and highlight possible genes that may have contributed to the differentiation of this species worldwide.


Assuntos
Aclimatação , Domesticação , Cabras/genética , Seleção Genética , Animais , Cruzamento/métodos , Variação Genética , Genoma , Genótipo , Cabras/fisiologia , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
18.
Genet Sel Evol ; 50(1): 58, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30449284

RESUMO

BACKGROUND: Goat populations that are characterized within the AdaptMap project cover a large part of the worldwide distribution of this species and provide the opportunity to assess their diversity at a global scale. We analysed genome-wide 50 K single nucleotide polymorphism (SNP) data from 144 populations to describe the global patterns of molecular variation, compare them to those observed in other livestock species, and identify the drivers that led to the current distribution of goats. RESULTS: A high degree of genetic variability exists among the goat populations studied. Our results highlight a strong partitioning of molecular diversity between and within continents. Three major gene pools correspond to goats from Europe, Africa and West Asia. Dissection of sub-structures disclosed regional gene pools, which reflect the main post-domestication migration routes. We also identified several exchanges, mainly in African populations, and which often involve admixed and cosmopolitan breeds. Extensive gene flow has taken place within specific areas (e.g., south Europe, Morocco and Mali-Burkina Faso-Nigeria), whereas elsewhere isolation due to geographical barriers (e.g., seas or mountains) or human management has decreased local gene flows. CONCLUSIONS: After domestication in the Fertile Crescent in the early Neolithic era (ca. 12,000 YBP), domestic goats that already carried differentiated gene pools spread to Europe, Africa and Asia. The spread of these populations determined the major genomic background of the continental populations, which currently have a more marked subdivision than that observed in other ruminant livestock species. Subsequently, further diversification occurred at the regional level due to geographical and reproductive isolation, which was accompanied by additional migrations and/or importations, the traces of which are still detectable today. The effects of breed formation were clearly detected, particularly in Central and North Europe. Overall, our results highlight a remarkable diversity that occurs at the global scale and is locally partitioned and often affected by introgression from cosmopolitan breeds. These findings support the importance of long-term preservation of goat diversity, and provide a useful framework for investigating adaptive introgression, directing genetic improvement and choosing breeding targets.


Assuntos
Migração Animal , Domesticação , Fluxo Gênico , Cabras/genética , Polimorfismo de Nucleotídeo Único , África , Animais , Ásia , Cruzamento , Europa (Continente) , Variação Genética , Genoma , Genótipo , Cabras/fisiologia , Filogeografia
19.
Front Genet ; 9: 385, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333851

RESUMO

East Coast fever (ECF) is a fatal sickness affecting cattle populations of eastern, central, and southern Africa. The disease is transmitted by the tick Rhipicephalus appendiculatus, and caused by the protozoan Theileria parva parva, which invades host lymphocytes and promotes their clonal expansion. Importantly, indigenous cattle show tolerance to infection in ECF-endemically stable areas. Here, the putative genetic bases underlying ECF-tolerance were investigated using molecular data and epidemiological information from 823 indigenous cattle from Uganda. Vector distribution and host infection risk were estimated over the study area and subsequently tested as triggers of local adaptation by means of landscape genomics analysis. We identified 41 and seven candidate adaptive loci for tick resistance and infection tolerance, respectively. Among the genes associated with the candidate adaptive loci are PRKG1 and SLA2. PRKG1 was already described as associated with tick resistance in indigenous South African cattle, due to its role into inflammatory response. SLA2 is part of the regulatory pathways involved into lymphocytes' proliferation. Additionally, local ancestry analysis suggested the zebuine origin of the genomic region candidate for tick resistance.

20.
Front Genet ; 9: 53, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29552025

RESUMO

The domestic water buffalo is native to the Asian continent but through historical migrations and recent importations, nowadays has a worldwide distribution. The two types of water buffalo, i.e., river and swamp, display distinct morphological and behavioral traits, different karyotypes and also have different purposes and geographical distributions. River buffaloes from Pakistan, Iran, Turkey, Egypt, Romania, Bulgaria, Italy, Mozambique, Brazil and Colombia, and swamp buffaloes from China, Thailand, Philippines, Indonesia and Brazil were genotyped with a species-specific medium-density 90K SNP panel. We estimated the levels of molecular diversity and described population structure, which revealed historical relationships between populations and migration events. Three distinct gene pools were identified in pure river as well as in pure swamp buffalo populations. Genomic admixture was seen in the Philippines and in Brazil, resulting from importations of animals for breed improvement. Our results were largely consistent with previous archeological, historical and molecular-based evidence for two independent domestication events for river- and swamp-type buffaloes, which occurred in the Indo-Pakistani region and close to the China/Indochina border, respectively. Based on a geographical analysis of the distribution of diversity, our evidence also indicated that the water buffalo spread out of the domestication centers followed two major divergent migration directions: river buffaloes migrated west from the Indian sub-continent while swamp buffaloes migrated from northern Indochina via an east-south-eastern route. These data suggest that the current distribution of water buffalo diversity has been shaped by the combined effects of multiple migration events occurred at different stages of the post-domestication history of the species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...